

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4722

Core Mathematics 2

Monday

10 JANUARY 2005

Afternoon

1 hour 30 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Simplify
$$(3+2x)^3 - (3-2x)^3$$
.

[5]

2 A sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 2$$
 and $u_{n+1} = \frac{1}{1 - u_n}$ for $n \ge 1$.

- (i) Write down the values of u_2 , u_3 , u_4 and u_5 . [3]
- (ii) Deduce the value of u_{200} , showing your reasoning. [4]

3

A landmark L is observed by a surveyor from three points A, B and C on a straight horizontal road, where AB = BC = 200 m. Angles LAB and LBA are 65° and 80° respectively (see diagram). Calculate

(i) the shortest distance from L to the road,

[4]

(ii) the distance LC.

[3]

4

The diagram shows a sketch of parts of the curves $y = \frac{16}{r^2}$ and $y = 17 - x^2$.

(i) Verify that these curves intersect at the points (1, 16) and (4, 1).

[1]

(ii) Calculate the exact area of the shaded region between the curves.

[7]

5 (i) Prove that the equation

$$\sin \theta \tan \theta = \cos \theta + 1$$

can be expressed in the form

$$2\cos^2\theta + \cos\theta - 1 = 0.$$
 [3]

(ii) Hence solve the equation

$$\sin \theta \tan \theta = \cos \theta + 1$$
,

giving all values of
$$\theta$$
 between 0° and 360° .

[5]

[3]

6 (a) Find $\int x(x^2+2) \, dx$.

(b) (i) Find
$$\int \frac{1}{\sqrt{x}} dx$$
. [3]

(ii) The gradient of a curve is given by $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$. Find the equation of the curve, given that it passes through the point (4, 0).

7

The diagram shows an equilateral triangle ABC with sides of length 12 cm. The mid-point of BC is O, and a circular arc with centre O joins D and E, the mid-points of AB and AC.

(i) Find the length of the arc DE, and show that the area of the sector ODE is $6\pi \,\mathrm{cm}^2$. [4]

(ii) Find the exact area of the shaded region.

[Questions 8 and 9 are printed overleaf.]

[4]

8 (i) On a single diagram, sketch the curves with the following equations. In each case state the coordinates of any points of intersection with the axes.

(a)
$$y = a^x$$
, where a is a constant such that $a > 1$. [2]

(b)
$$y = 2b^x$$
, where b is a constant such that $0 < b < 1$. [2]

(ii) The curves in part (i) intersect at the point P. Prove that the x-coordinate of P is

$$\frac{1}{\log_2 a - \log_2 b}.$$
 [5]

A geometric progression has first term a, where $a \neq 0$, and common ratio r, where $r \neq 1$. The difference between the fourth term and the first term is equal to four times the difference between the third term and the second term.

(i) Show that
$$r^3 - 4r^2 + 4r - 1 = 0$$
. [2]

- (ii) Show that r-1 is a factor of r^3-4r^2+4r-1 . Hence factorise r^3-4r^2+4r-1 . [3]
- (iii) Hence find the two possible values for the ratio of the geometric progression. Give your answers in an exact form. [2]
- (iv) For the value of r for which the progression is convergent, prove that the sum to infinity is $\frac{1}{2}a(1+\sqrt{5})$. [4]

Pre-Standardisation	Mark Scheme
----------------------------	-------------

4722/01

January 2005

1	$(3+2x)^3 = 27 + 54x + 36x^2 + 8x^3$	
	$(3-2x)^3 = 27 - 54x + 36x^2 - 8x^3$	

M1 For recognisable binomial expansion attempt
A1 For any two terms correct, possibly unsimplified

A1 For all four terms correct and simplified

В1√

For changing the appropriate signs

Hence $(3+2x)^3 - (3-2x)^3 = 108x + 16x^3$

A1 5 For answer $108x + 16x^3$ or $4x(27 + 4x^2)$

5

2 (i) $u_2 = -1$, $u_3 = \frac{1}{2}$, $u_4 = 2$, u_5	= -1
---	------

- B1 For correct value -1 for u_2
- B1 $\sqrt{}$ For correct u_3 from their u_2
- B1 $\sqrt{}$ For correct u_4 and u_5 from their u_3 and u_4
- (ii) u_1, u_4, u_7 , etc all have the value 2 Hence $u_{199} = 2$, giving $u_{200} = -1$
- B1 For recognising the repeating property

 M1 For division by 3 or equivalent
- M1 For division by 3, or equivalent
- A1 For correctly linking relevant term to a term already found
- A1 **4** For the correct answer -1

(SR - Answer only is B1)

7

3 (i)
$$\frac{LB}{\sin 65^{\circ}} = \frac{200}{\sin 35^{\circ}}$$

 $\Rightarrow LB = 316.0198...$

OR
$$\frac{LA}{\sin 80^{\circ}} = \frac{200}{\sin 35^{\circ}}$$
$$\Rightarrow LA = 343.39...$$

For correct use of the sine rule in ΔLAB (could be in ii)

A1 For correct value of (or explicit expression for) *LB* or *LA*

Hence $p = LB \sin 80^\circ = 311 \text{ m}$ $p = LA \sin 65 = 311 \text{ m}$ M1

For calculation of perpendicular distance

.---A1 M1

Α1

M1

- **4** For correct distance (rounding to) 311
- (ii) $LC^2 = 200^2 + 316^2 2 \times 200 \times 316 \times \cos 100^\circ$ M1 $\left(or\ LC^2 = 400^2 + 343^2 - 2 \times 400 \times 343 \times \cos 65^\circ\right)$ A1 $\sqrt{}$
- For use of cosine rule in $\triangle LBC$ or LAC

For correct unsimplified numerical expression for LC^2

following their LA or LB

Hence LC = 402 m

3 For correct distance (rounding to) 402

7

4 (i)
$$\frac{16}{1^2} = 16$$
 and $16 = 17 - 1^2$ stated

$$1 = \frac{16}{4^2}$$
 and $1 = 17 - 4^2$ stated

1 For complete verification for both points

(ii) Area is
$$\int_{1}^{4} \left(17 - x^2 - \frac{16}{x^2} \right) dx$$

Β1

For appropriate subtraction (at any stage) – correct order

$$= \left[17x - \frac{1}{3}x^3 + \frac{16}{x}\right]_1^4$$

*M1

For integration attempt with any one term OK

For $17x - \frac{1}{3}x^3$ completely correct

7 For correct answer 18

A1

For correct form kx^{-1} for third term For correct k, for their stage of working

$$=68-\frac{64}{3}+4-17+\frac{1}{3}-16=18$$

M1dep*M

For use of limits – correct order

8

5	(i)	$\sin\theta\tan\theta = \sin\theta \times$	$\sin\theta$	$\frac{1-\cos^2\theta}{}$
J	(1)	Sino tano – Sino A	$\cos \theta$	$\cos \theta$

M1 For use of
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos \theta$$
M1 For use of $\cos^2 \theta + \sin^2 \theta = 1$

Hence
$$1 - \cos^2 \theta = \cos \theta (\cos \theta + 1)$$
,

Hence
$$1-\cos^2\theta = \cos\theta(\cos\theta + 1)$$
,
i.e. $2\cos^2\theta + \cos\theta - 1 = 0$, or equiv

(ii)
$$(2\cos\theta - 1)(\cos\theta + 1) = 0$$

For solution of quadratic equation in
$$\cos \theta$$

Hence
$$\cos \theta = \frac{1}{2}$$
 or -1

Α1

For both values of
$$\cos \theta$$
 correct

Hence
$$\cos \theta = \frac{1}{2}$$
 or -1
So $\theta = 60^{\circ}$, 300° , 180°

5 For a correct non-principal-value answer, following their value of
$$\cos \theta$$
 (excluding $\cos \theta = -1, 0, 1$) and no other values for θ .

8

6 (a)
$$\int (x^3 + 2x) dx = \frac{1}{4}x^4 + x^2 + c$$

M1

For
$$\frac{1}{4}x^4 + x^2$$
 correct

3 For addition of an arbitrary constant (this mark can be given in $(\mathbf{b})(\mathbf{i})$ if not earned here), and no dx in either

(b) (i)
$$\int x^{-\frac{1}{2}} dx = 2x^{\frac{1}{2}} + c$$

For use of
$$\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$

For integral of the form $kx^{\frac{1}{2}}$

(ii)
$$0 = 2\sqrt{4} + c \Rightarrow c = -4$$

3 For correct term $2x^{\frac{1}{2}}$ For use of x = 4, y = 0 to evaluate c

A1t For correct c from their answer in **(b)(i)**

Hence curve is
$$y = 2x^{\frac{1}{2}} - 4$$

A1t

3 For equation of the curve correctly stated

9

- 7 Length of *OD* is 6 cm Angle *DOE* is $\frac{1}{3}\pi / 1.047^{c} / 60^{o} / \frac{1}{6}$ of circle Hence arc length DE is 2π cm (allow 6.28 cm) Area is $\frac{1}{2} \times 6^2 \times \frac{1}{3} \pi = 6\pi \text{ cm}^2 \left(\text{or } \frac{60}{360} \times \pi \times 6^2 \right)$
- For stating or using the correct value of rВ1
- For stating or using the correct angle **B**1
- For correct use of $s = r\theta$ or equiv in degrees **B**1
 - **4** For obtaining the given answer 6π correctly
- (ii) Area of small triangle is $\frac{1}{2} \times 6^2 \times \frac{1}{2} \sqrt{3} = 9\sqrt{3}$
- *M1

В1

Α1

For use of $\Delta = \frac{1}{2}ab\sin C$, or equivalent

Area of segment is $6\pi - 9\sqrt{3}$

M1dep*M

For correct value $9\sqrt{3}$, or equiv For relevant use of (sector – triangle)

Hence shaded area is $(18\sqrt{3} - 6\pi)$ cm²

- **A**1
- **4** For correct answer $18\sqrt{3} 6\pi$, or exact equiv

Scheme for alternative approaches:

*M1

Attempt area of big triangle / rhombus / segment, using

- $\Delta = \frac{1}{2}ab\sin C$, or equivalent
- **A**1 M1dep*M

Correct area Relevant subtraction

A₁

For correct answer $18\sqrt{3} - 6\pi$

8	(i)	(a) Sketch showing exponential grow Intersection with <i>y</i> -axis is (0,1)	vth M1 A1	For correct shape in at least 1 st quadrant 2 For 1st and 2nd quadrants, and <i>y</i> -coordinate 1 stated		
		(b) Sketch showing exponential deca Intersection with <i>y</i> -axis is (0, 2)	y M1 A1	For correct shape in at least 1 st quadrant 2 For 1st and 2nd quadrants, and <i>y</i> -coordinate 2 stated		
	(ii)	$a^{x} = 2b^{x}$ Hence $x \log_{2} a = \log_{2} 2 + x \log_{2} b$	B1 M1 M1 M1	For stating the equation in <i>x</i> For taking logs (any base) For use of one log law For use of a second log law		
		i.e. $x = \frac{1}{\log_2 a - \log_2 b}$	A1	5 For showing the given answer correctly		
			<u> </u>			
9	(i)	$ar^3 - a = 4(ar^2 - ar)$	M1	For using ar^{n-1} to form an equation		
		Hence $r^3 - 4r^2 + 4r - 1 = 0$	A1	2 For showing the given equation correctly		
	(ii)	1 - 4 + 4 - 1 = 0	B1	For correct substitution of $r = 1$, or state no remainder		
		Factors are $(r-1)(r^2-3r+1)$	M1	For attempted division, or equivalent		
			A1	3 For correct factor $r^2 - 3r + 1$		
	(iii)	$r = \frac{3 \pm \sqrt{5}}{2}$	M1	For solving the relevant quadratic equation		
			A1	2 For correct roots in exact form		
	(iv)	The relevant value of r is $\frac{3-\sqrt{5}}{2}$ (or de	ecimal equiv) B1	For selecting the appropriate value of <i>r</i>		
		Hence $S_{\infty} = \frac{a}{1 - \frac{1}{2} (3 - \sqrt{5})}$	M1	For relevant use of $\frac{a}{1-r}$		
		$= \frac{2a}{-1+\sqrt{5}} = \frac{2a(-1-\sqrt{5})}{(-1+\sqrt{5})(-1-\sqrt{5})}$	M1	For correct process for rationalising, using two term		
				surd expression		
		$= \frac{1}{2}a\left(1+\sqrt{5}\right)$	A1	4 For showing the given answer correctly		
			11			

Final mark scheme

Nikki Adams 16/01/2005